6th January, 2021
A tipping point is a threshold at which small quantitative changes in the system trigger a non-linear change process that is driven by system-internal feedback mechanisms and inevitably leads to a qualitatively different state of the system, which is often irreversible.
\[ \frac{\mathrm{d}x}{\mathrm{d}t} = f(x) \]
\[ x_{n + 1} = x_n + \Delta_t \cdot f(x_n) \enspace . \] - Given an initial condition, \(x(t = 0) = x_0\), we know where the system is at any point \(t\)
\[ \frac{\mathrm{d}x}{\mathrm{d}t} = x \left(1 - \frac{x}{10}\right) - p\frac{x^2}{1 + x^2} \]
\[ \frac{\mathrm{d}x}{\mathrm{d}t} = x \left(1 - \frac{x}{10}\right) - p\frac{x^2}{1 + x^2} \]
\[ \frac{\mathrm{d}x}{\mathrm{d}t} = x \left(1 - \frac{x}{10}\right) - p\frac{x^2}{1 + x^2} \]
\[ \frac{\mathrm{d}x}{\mathrm{d}t} = x \left(1 - \frac{x}{10}\right) - p\frac{x^2}{1 + x^2} \]
\[ \frac{\mathrm{d}x}{\mathrm{d}t} = x \left(1 - \frac{x}{10}\right) - p\frac{x^2}{1 + x^2} \]
\[ \frac{\mathrm{d}x}{\mathrm{d}t} = x \left(1 - \frac{x}{10}\right) - p\frac{x^2}{1 + x^2} \]
\[ \frac{\mathrm{d}x}{\mathrm{d}t} = x \left(1 - \frac{x}{10}\right) - p\frac{x^2}{1 + x^2} \]
\[ \frac{\mathrm{d}x}{\mathrm{d}t} = x \left(1 - \frac{x}{10}\right) - p\frac{x^2}{1 + x^2} \]
\[ \frac{\mathrm{d}x}{\mathrm{d}t} = x \left(1 - \frac{x}{10}\right) - p\frac{x^2}{1 + x^2} \]